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We investigate properties of solid-on-solid models for crystal growth, involving 
general microscopic rates of capture of atoms by the crystal surface and of 
escape of atoms. The rates in this Markov process influence the stability of the 
growing surface. We prove, for various different ranges of the rate parameters, 
stability (i.e., ergodicity) and instability (i.e., nullity) of the growth process. 
Symmetry properties of the process, such as reversibility, dynamic reversibility, 
and reflection invariance, are proved or disproved under various conditions. We 
give a measure of surface smoothness that distinguishes between stable and 
unstable growth. 

KEY WORDS:  Crystal growth; stability; Markov process; ergodicity; 
transience; null recurrence; dynamic reversibility; surface roughness. 

1. I N T R O D U C T I O N  

The growth of crystalline materials has been simulated by many workers 
using microscopic models of the growing crystal surface. One class of 
models, discussed here, involves Markov processes whose transitions are 
the captures of single atoms by the crystal surface and escapes of single 
atoms (e.g., refs. 8-10 and 18). Much physical insight has been gained 
from the simulation of such Markov models: it has provided quantitative 
information about the important influence of dislocations upon growth 
rate, and the influence of microscopic rates on surface topography and 
roughness. 

There seems, however, to be no (rigorous) mathematical demonstra- 
tion in three dimensions that steady crystal growth and a statistically stable 
surface structure occur in such models. Some computer simulations suggest 
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that this occurs (e.g., ref. 9, Fig, 4), but while a mathematical proof is 
lacking, there remains the alarming (or perhaps interesting) possibility 
that, in the longer term, growth might become unsteady and unstable in 
such models: the surface might become increasingly rough without limit. 
We shall find (Theorems 2-4, 8, and 9) that this latter effect indeed occurs 
for a range of microscopic rates. 

Therefore, it becomes important to understand conditions under 
which stable growth does occur. Our Theorem 1 provides some conditions, 
but we believe them to be excessively stringent. 

For crystal growth in two dimensions we studied a stable case in detail 
and gave an exact description of the growing crystal edge (its stochastic 
equilibrium probability function) and exact formulas for growth rates 
(refs. 5-7: these results are in accord with the extensive experimental studies 
of lamellar crystallization by polymers). Our method relied upon the 
d y n a m i c  r e v e r s i b i l i t y  of the growth process. 

There appears to be no equivalent knowledge of three-dimensional 
crystal growth, where matters are more difficult. Our Theorem 5 highlights 
a basic difficulty, by showing that in three dimensions there are no dynami- 
cally reversible processes of our type. Certain standard techniques for 
studying stable growth are therefore not available. Other techniques, 
notably the general theorems of Foster, (4) based on inequalities, do, 
however, provide some useful information about stability. 

One of our aims is to show that recurrence and transience, in the 
stochastic sense, provide natural mathematical characterizations of the 
physical notions of stability and instability. 

2. THE M O D E L  

In the familiar solid-on-solid (SOS) model, atoms are regarded as unit 
cubes and are stacked on the unit squares of a portion of the integer lattice 
Z 2, a large chessboard, say. All such arrays of stacks are possible con- 
figurations. We are interested only in the surfaces of such arrays, so that 
surfaces differing only in absolute height are regarded as equivalent states. 
The centers of the stacks (lying on a shifted Z 2) are labeled (i, j), where 
i = 1 ..... M and j =  1 ..... N. If nij is the height 'number of cubes) at site (i, j), 
we put 

and 

gi, j ~ Hi+l , j - -n i ,  j (2.1a) 

hi, j = ni, j + l  - ni .~ (2.1b) 



On the  Stability of Crystal G r o w t h  75 

representing height differences between stacks at (i, j )  and stacks to the 
east and to the north, respectively. We assume periodic boundary condi- 
tions 

g i + M , j + N  = gi, j for all i, j 

and likewise for h~,j. We can impose the conditions 

gi, i = 0 for all j 
i 

hi, j = 0 for all i 
J 

(2.2) 

(2.3) 

for all time, since the addition or removal of atoms from stacks preserves 
these sums, Conditions (2.2) and (2.3) imply that, effectively, growth occurs 
on the surface of a torus and that the base of the chessboard joins row by 
row and column by column at its opposite edges: so there is no dislocation 
in the lattice structure. For  large M and N, edge effects are expected to 
be unimportant, so that placing the process on a torus should be an 
innocuous device. Some of our results can be generalized so as to include 
various idealized dislocations in the crystal lattice, In this paper, however, 
we keep matters as simple as possible. 

With the periodic boundary conditions, the definitions (2.1) extend to 
all (i, j). Since the net height difference around any circuit is zero, we have 

gi, j + hi+ 1 , j -  gi, j+  1 - -  hi,  j = 0 (2.4) 

Then our state space comprises all vectors 

h = { g i j ,  hi, j :  i =  1 ..... M ; j =  1,..., N} (2.5) 

satisfying (2.2)-(2.4). 
We consider a Markov process on this state space, whose transitions 

are the additions (captures) of single atoms to (by) stacks, i.e., transitions 
of the form 

h ~ h '  

where, for some i, j, 

gl-- 1,j = gi l,j + 1 

h i , j -  1 = hi, j -  1 + 1 

t 

g~,J = g ~ , i -  1 

h~,j = h~,j - 1 

(2.6) 
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while other gk, t and hk, t are unchanged. The state h' of the form (2.6) is 
denoted hi.j, so that all transitions are of the form h ~ h i ,  j. Prior to 
Section 9, we do not allow atoms to escape from the surface, so we are 
currently confining our study to the case where crystal growth is rapid 
enough for escapes to be relatively improbable. 

The probability rates q(h, h') of these transitions are taken to depend 
only on the number of neighbor atomic bonds created, or equivalently on 
the number of faces that are covered when a new atom is captured, namely 
1, 2, 3, 4, or 5, Since one horizontal face is always covered, we count only 
vertical faces, and specify rates 

/~n: n = 0 ,  1 ..... 4 

for transitions that cover n vertical faces, or, equivalently, increase the 
number of vertical faces on the surface by 4 - 2n. We take/~n > 0 for all n, 
so that the process is irreducible (every state can be reached eventually 
from every other state), and/~n < ~ ,  so there are no instantaneous states. 
We choose the process to be Markovian so that the probability distribu- 
tion p~(h) of state h at time t satisfies the Kolmogorov forward equation 

• p,(h) = ~ p,(h')q(h', h ) - p , ( h ) ~  q(h, h') 
h '  h '  

(2.7) 

The central question addressed in this paper is the possible existence 
of a stochastic equilibrium for this process, with probability distribution 

peq(h) = lira p,(h) (2.8) 

Such an equilibrium describes a statistically stable surface structure and a 
steady growth rate (6) 

poq(h) q(h) 
h 

where 

q(h)= ~ q(h, h') 
h ' ~ - h  . 

which is the total (probability) rate out of state h. 
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Since our process has an infinite state space, such an equilibrium is not 
assured. If we constrain the state space so as to prevent large steps, e.g., 
take 

I gol ~ 1, Ihol <~ 1 

and disallow transitions that violate these constraints, then the resulting 
finite state space guarantees the existence of an equilibrium (ref. 3, p. 392). 
Jackson, (~2) for example, imposed such constraints, but Gilmer and 
Jackson f~~ did not. Such constraints make certain mathematical problems 
more difficult. For example, in two dimensions we know the stationary 
distributions in the unconstrained cases, (s'6) but not in the constrained 
cases: the constraints destroy dynamic reversibility. 

We emphasize that the stochastic equilibria studied here are quite 
distinct from the thermodynamic equilibrium between two phases (see 
Section 9). When crystal growth occurs, the fluid phase is not in thermo- 
dynamic equilibrium with the crystal phase. 

3. THE M A I N  RESULTS A N D  THEIR S IGNIF ICANCE 

Here we examine how conditions on the rates fin influence the 
existence of (2.8). First we state the results and follow with some 
explanation and interpretation. 

Theorem 1. If 

( M N -  1) 2 flo < min(2Kfll, 4fi2, 2fl3, f14) (3.1) 

where K = rain(M, N), the process is ergodic. For M = N = 2, it is ergodic 
if fie < f12 < f14. 

T h e o r e m  2. If rain(fie, ill) > max(fl3, f14), the process is transient. 

Theorem 3. If rain(fie, f l l)=max(fl3,  f14), the process is null. 

Theorem 4. If fie = fll = f12 = f13 = f14, the process is null-recurrent 
for M N  = 2 or 3 and transient for M N  >>. 4. 

Theorem 5. If M = N = 2 ,  f lo<fl2<fl4,  and flo+f14=2f12, the 
process is dynamically reversible with respect to conjugate states - h .  
For M~>2 and N>~3 (or vice versa) it is not dynamically reversible for 
any choice of fin. 

Many standard texts deal with the concepts of ergodic, null, and 
transient processesJ 2'3> We briefly summarize with reference to a simple 
tree. 
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irreducible process 

/ 
E / nu l l (E  = oc) 

Processes are termed recurrent if they are certain to return eventually 
to any starting state, i.e., with probability P = 1. If not, they are termed 
transient. Recurrent processes are termed positive-recurrent (also called 
ergodie) if their expected time E of first recurrence is finite: otherwise, they 
are termed null-recurrent. Null processes comprise both transient and null- 
recurrent processes: both have E =  o% but for very different reasons. Only 
ergodic processes have equilibrium distributions. So transient processes are 
the most errant and unstable, while null-recurrent processes are inter- 
mediate in character between transient and positive-recurrent processes. 

We emphasize the distinction between our present usage of the term 
transient and its other usage to describe initial or short-term behavior (cf. 
ref. 9). 

The term dynamically reversible was coined by Whittle (19) in the 
stochastic context, and refers to a generalization of the concept of a 
reversible Markov chain. Details are given by Whittle (19'2~ and Kelly (13) 
and its application to two-dimensional crystal growth by Gates and 
Westcott (6) and Gates.(S~ For dynamically reversible processes, like reversible 
ones, there are explicit general formulas for equilibrium probability 
distributions. The significance of Theorem 5, then, is that (except for the 
trivial case M = N = 2) these formulas are inapplicable in three dimensions, 
so the equilibrium probabilities might be quite difficult to find. 

The condition (3.1) of Theorem 1 can be tightened somewhat, as 
shown in Section 4. The condition can be interpreted as follows. We put 
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r i*= min(Kfl~, 4ri2, 2fl3, ri4) and L = M N .  We suppose that the surface is 
initially completely flat (h=0) .  Then the expected time to the first rio 
transition is l /q(0)= 1/(Lrio)-T1,  say. After this transition a new layer 
can be completed with L -  1 non-rio transitions: this takes a time of order 
( L -  1)/ri *=  T 2, say. Thus, condition (3.1) states that 

T 2 <  T1 

which means that layers tend to be completed after a single rio transition, 
before the next rio transition occurs. The growing surface therefore tends to 
be rather flat. 

We note that, for two-dimensional crystal growth, a condition of the 
form rioL2=ri * with L--* oc was shown (6) to lead to a continuum model. 
So we might expect analogous two-dimensional growth behavior in the 
near-equality case of condition (3.1). This implies that our proof of 
ergodicity applies only when the surface is no rougher than those occurring 
in the continuum regime. 

The condition rio < ri2 </34 in the M = N = 2 case of Theorem 1 is close 
to optimal, as we shall show elsewhere. For general M and N we suspect 
that stable crystal growth occurs under the condition 

riO < ril < ri2 • ri3 ~" ri4 (3.2) 

or even a somewhat weaker condition. The heuristic argument is that 
recurrence of the flat surface state h = 0 is likely if those transitions that 
have the greatest flattening effect occur at the highest rate. Since rin 
transitions have an increasing flattening effect as n increases (they remove 
more vertical faces), we are led to the conjecture (3.2). The condition of 
Theorem l therefore seems excessively strong. 

The condition of Theorem 2 is tending against (3.2), since it includes, 
for example, the case 

rio > ril > r i 2 > r i 3  > ri4 (3.3) 

This latter would seem to favor the creation of an increasingly rough 
surface, so the result seems intuitively natural. More surprising, perhaps, is 
that Theorem 2 includes the case 

ril > flo > r4 > ri3 (3.4) 

One might think that by sufficiently favoring ril transitions over rio's, and 
fl4's over ri3's (with a free choice of f12), one could induce stable growth. 

822/59/1-2-6 
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Theorem 2 shows that this is not so. The condition of Theorem 2 might be 
closer to optimal. 

Theorem 3 is something of an appendage to Theorem 2, but its 
method of proof is different. We cannot say whether the null process is 
null-recurrent or transient. 

Theorem 4 deals with the case where stacks grow independently, and 
can be proved by elementary methods. The trivial case MN = 1 is static. 

We shall not discuss in detail how physical conditions influence the 
relative sizes of the fin (see, however, our comments at the end of Section 8 
and at the beginning of Section 9). Interatomic attraction favors orderings 
like (3.2). Limitations on the mobility of atoms favor exposed sites, and 
hence an ordering more like (3.3). Such limitations are more severe when 
crystal growth is fast. So fast growth tends more toward a transient process 
and a surface of anomalous roughness (see Section 10). Our purpose here, 
however, is not to prejudice particular values of the fin, but rather to 
examine the mathematical and physical consequences of various such 
values. 

In proving these theorems, it is sufficient to consider the embedded (or 
jump) chain, defined as the discrete-time Markov chain whose transitions 
are the successive state changes in the original process whenever they occur 
(ref. 1, p. 259; ref. 13, p. 3). It has transition probabilities 

p(h, h') = q(h, h')/q(h) (3.5) 

Provided 0 < fin < m for all n, the embedded chain is itself irreducible and 
has the same character (ergodic, null-recurrent, or transient) as the original 
process. This is because the process is now regular, i.e., uniquely deter- 
mined by the q's (ref. 1, 1967, Corollary II.19.2), and hence: 

(i) Chain and process are recurrent or not together [ref. 17, 
Lemma 4.2(iv)]. 

(ii) Chain and process are ergodic or not together (ref. 14, 
Theorem 3). 

4. PROOF OF T H E O R E M  1 

Proofs of Theorems 1 and 2 are based upon general theorems of 
Foster (4) and Theorem3 upon a related theorem of Tweedie. (~7) The 
general theorems all involve an unspecified test function whose existence 
and properties have to be proved either indirectly or, as in our approach, 
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by explicit choice of such a function. This difficulty limits the utility of these 
general theorems, and accounts for the incompleteness of our results. 

According to a simple extension of Foster's Theorem 2 (cf. ref. 17, 
1976, Theorem 6.1), our embedded chain is ergodic if we can find a positive 
function y(h) such that, for all but a finite number of h, 

Z'(h)-~  p(h, h') y(h')~< y(h)-  1 (4.1) 
h' 

and such that 

S(0) < ~ (4.2) 

Intuitively, (4.1) is saying that the mean change in the function y between 
jumps of the process is strictly negative, so that, in an average sense, the 
process is drifting back toward 0. This makes the resultant ergodicity very 
plausible. Also, (4.1) is satisfied as an equality if y(h) is the mean time of 
first arrival at 0 starting from h: this (unknown) y is the optimal test function. 

To apply this extended Foster's theorem, we choose 

M N 

y ( h ) =  Z ~ n*; (4.3) 
i = i  j = l  

where 

n*.= (4.4) ',2 max Mi, i - -  Fli, j 
t ,J  

with the Mi. j of Section 2. The n~' represent the depths of sites ( i , j )  below 
the highest site(s), and y(h) represents the total volume of space above the 
surface up to the level of the highest site(s). Evidently y(h) is a very crude 
measure of the expected time of first arrival at 0 starting from h. 

Putting L = M N ,  we note that a transition at a site (i, j )  where n* i = 0 
increases y(h) by L -  1. A transition at other sites decreases y(h) by 1. We 
put 

l (h)=#{ i ,  jln* =0} t ,J  

i.e., the number of equal maximal sites on the surface. Then 

L'(h) = q(h) -~ [flol(h){y(h) + L - 1 } + c~(h) {y(h) - 1 }] 

= y(h) + q(h) -~ {/~o/(h)(L - 1) - ~(h)} (4.5) 
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where 
0(h)= ~ q(h, hi.j) 

i,j:n~,)~O 
is the total rate out of the nonmaximal sites. 

We now prove that, under (3.1), the second term on the right side of 
(4.5) is bounded below zero whenever h r  Write U(h) = L -  l(h), the 
number of nonmaximal sites, which is positive only when h ~ 0. 

If U ( h ) = l ,  this nonmaximal site is a f14 site. So ~(h)=fl4, 
/(h) = ( L -  1), and the required result follows directly from (3.1). 

If U(h)= 2, the nonmaximal sites are either f13 or f14. Should there be 
any f14 sites, the required result is already implied by the U(h)= 1 case, 
since 0(h) is larger and l(h) smaller here. So, in the new situation, 
0(h) =2fl3, / (h)= ( L - 2 ) ,  and again (3.1) is sufficient for our needs. 

If U(h)= 3, there is either a f14 site or two f13 sites. By the argument 
in the preceding paragraph, this case is subsumed by earlier ones. 

If U(h)= 4, the only case not subsumed already is that of four f12 sites. 
Here 0(h)=4fl2 , l (h)= ( L -  1), and (3.1) suffices again. 

If U(h) > 4, the boundary of the region of nonmaximal sites is either 
one or more closed curves entirely within the M • N lattice array, or it also 
includes regions which reach an edge and are then periodically continued 
onto the opposite edge. Any closed curve, which of course consists of 
linked horizontal and vertical pieces, must have at least four corners, hence 
have at least a /~4 or two f13 sites, or a/~3 and three fi2 sites. Only the last 
case is new; but then 0(h) >/~3 "~ 3fi2 > ~ ( L -  1) 2 by (3.1), and yet again the 
required boundedness holds. So closed curves provide nothing new. A little 
thought shows that in this context, the most extreme case involving just fi~ 
sites is a two-site-wide "ditch" running straight across between the closer 
sides. Here ~ / ( h ) = 2 K f i l , I ( h ) = ( L -  1 ) (L-2K) ,  so once more (3.1) is 
adequate. 

We conclude that, under condition (3.1), we can find 6 > 0 such that 

.Z(h) < y(h) - 

The rescaled test function y(h)/6 then satisfies (4.1). Since Z ( 0 ) = L - 1 ,  
(4.2) also holds, so ergodicity is proved under condition (3.1). 

In the case M = N = 2, the periodic boundary conditions imply that all 
transitions are of type rio, f12, or f14- Now relabel sites and steps 

(1,1) = (1), gx, l=hl 

(2,1) = (2), h2,1 =h2 

(2,2) = (3), -g1,2 = h 3 

(1 ,2 )=  (4), -h , ,1  =h4 
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giving the picture 

(4) /7,3 (3) 

83 

h4 h2 

(1) h ', (2) 

on every cell of the square lattice. Then (2.4) implies hl + h2 + h3 q- h4 = 0, 
while (2.3) makes no constraint. Hence the sites 1 ..... 4 define, equivalently, 
the edge of a two-dimensional crystal comprising four columns of unit 
squares; thus 

h2 

(2) 

hi 

(1) 

(3) 

h3 

(4) 

h4 

(1) 

with height differences hj between columns j and j + 1 and periodic end 
conditions. [In this illustration, (3) is a fl0 site, (2) and (4) are fi2 sites, and 
(1) is a 1~4 site.] This is a special case of the model studied extensively by 
Gates and Westcott (6"7) and Gates. (5) 

Now we choose the test function 

4 
y(h)= ~ h~ (4.6) 

i = l  
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and note that, after a transition at site i, 

y(h) ~ y(h) + 2 + 2hi_l - 2hi (4.7) 

If w i ( h )  denotes the transition rate at i for state h, we therefore have 

22(h) = y(h) + 2 + z(h) (4.8) 

where 

z(h)  -- 2 q ( h ) - I  ~ wi(h)(h~_ 1 - hi) 
i 

= 2q(h) -1 ~ hi{wi+ l(h) - w,(h) } (4.9) 
i 

Suppose h i>0 .  Then wi can only be /32 o r  /34 and wi+l can only be//o or 
//2. In each of these four possible combinations, the condition//0 </32  < /34 
of Theorem 1 implies that 

wi+ 1 <~ wi (4.10) 

If h z<0, the roles of sites i and i +  1 are merely exchanged, so the 
inequality (4.10) is reversed. Thus 

z(h) ~< 0 for all h 

Now at least two of hi,..., h 4 must be arbitrarily large for all but a 
finite number of h, since h 1 + - - .  - t -h  4 = 0. Further, at least one of these 
large hi must be between/30 and /32 or /30 and /34 sites; they cannot both 
lie between a pair of/32 sites. Therefore at least one summand in z(h) is 
arbitrarily negative. So if//o <//2 < fin, (4.8) implies that, for some 6 > 0, 

Z'(h) < y(h) - 6 (4.11 ) 

for all but a finite number of h. This establishes (4.1), while (4.2) is true 
because 22(0)= 2. Thus, Theorem 1 is proved. 

There are two observations from the proof. First, the condition (3.1) 
can clearly be slightly tightened, since, for example, 2//2 > ( L -  1 ) ( L -  2)/30 
will suffice in the proof. We chose to use (3.1) as stated because it has the 
right multiplying factors for the/3e yet is relatively uncluttered. Second, the 
test function y(h) used for M = N = 2  cannot .cope with general M x 2  
arrays precisely because it is then possible to have arbitrarily large he only 
between//2 sites. So there will be an infinite set of h for which z(h) cannot 
be made sufficiently negative to give (4.11). 
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5. P R O O F  O F  T H E O R E M  3 

We postpone the proof of Theorem 2 to Section 6 because the proof 
of Theorem 3 is much simpler and involves some concepts useful in the 
former. 

Here we use Theorem 9.l(ii) of Tweedie. (17) A simplified version states 
that a process of our type is null if there exists a nonnegative function y(h) 
such that 

X(h) ~> y(h) for h r  (5.1) 

and, for some C > 0, 

A ( h ) = ~  p(h, h') [ y ( h ) -  y(h')[ < C  uniformly (5.2) 
h '  

and 

y(h) > y(0) 

To apply the theorem, we choose 

(5.3) 

y ( h ) = ~ '  (tgi, jl + [hi, jl) (5.4) 
i, j 

which is simply the total area of all the vertical faces. Thus, if h--* h' is a 
/~o transition, then y ( h ' ) = y ( h ) + 4 ;  in general, for a /?. transition 
y(h') = y ( h ) +  4 -  2n. Letting Nn(h) denote the number of/~. sites on state 
h, we have 

X(h) = y(h) + 2q(h) 1 (2floNo + f l i N t  - f13N3 - -  2f14N4) 

>/y(h) + 2q(h)-I D(2No + N~ - N3 - 2N4) (5.5) 

by the condition of Theorem 3, where 

D = min(/?o,/~1) 

L e m m a  1 : 

2N0 + N1 - N 3  - 2N4 >/0 (5.6) 

ProoL Let s(h) be the total number of nonzero gi.j and hi, j, i.e., the 
total number of steps (of any height r 0) on the surface. Since every/~n site 
has exactly n steps facing it, we have 

s = N1 + 2N2 + 3N3 + 4N4 
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But s does not exceed the total number of ge, j and he, j, so that 

s<~2(No+N1 +N2+Ns+N4)  

The lemma now follows. 
The lemma and (5.5) give (5.1). We also have 

A(h) = (4/~oN o + 2fllN 1 + 2f13N 3 + 4fl4U4)/q(h ) <~ 4 

since 

Gates and Westco t t  

(5.7) 

min(3o, 31)>t max(33,/~4) (5.9) 

but the inequality case gives a weaker result than Theorem 2. 

6. PROOF OF T H E O R E M  2 

Here we use Theorem 6 of Foster, ~4) which states that a Markov 
process of our type is transient if there is a bounded function y(h) that 
satisfies, for all h r 0, 

S(h)~<y(h) (6.1) 

and 

y(h) < y(0) (6.2) 

for some h. If (6.1) were an equality, y(h) would be the probability of 
reaching 0 from h, in which case (6.2) shows that this will be less than 1 
[=y ( 0 )  here] for some, hence all, h e 0 .  

We choose 

y(h) = p~./2 (6.3) 

where 2(h) is the right side of (5.4) and 0 < p < 1 is a number yet to be 
determined. Then y ( h ) <  1 = y ( 0 )  in accord with (6.2). The next step 
parallels the proof of Theorem 3. If h---} h' is a 3o transition, then 
y(h') = pZy(h); in general, 

y(h') = p2-"y(h) 

Noting that (5.3) holds, we complete the proof of Theorem 3. The proof 
obviously works under the much weaker condition 

4 

q(h)= ~ /~nNn (5.8) 
n = 0  
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for a/in transition. Thus, with the notation of Section 5, 

4 

X ( h ) = q ( h ) - l Y ( h )  ~ N./1.P 2 - "  
n = O  

4 

=y(h)+q(h)-ly(h) ~ N,/1n(p 2 - ' - 1 )  
n ~ O  

using (5.8). Then, omitting h arguments, 

X = y + yq- t (1  - p)[  - No/1o(1 + p) - Nlfl, + N3/13P - 1  

+N4f14(1 + p) p - 2 ]  

<.y+ yq I (1-p)[-(2No+N1)b+(N3+ZN4)B] 

where 

b = min {�89 + p),/1,  } 

B = max {/13 p - ' ,  �89 + p) p-2}  

(6.4) 

(6.5) 

(6.6) 

We show below that, under the condition of Theorem 2, we can find 
0 < p < l  such that 

b>B (6.7) 

Then 

S <  y+ yq-'B(1 - p ) ( - 2 N o  - N I  +N3 +2N4) 

~<y 

by Lemma 1, and this is (6.1). 
To prove (6.7), suppose first that 

min(/1o,/11) >/13 >/14 (6.8) 

We show that we can find p such that (6.7) holds with B =  fl3/P. First we 
note that B =  fl3/P if we take 

p >/14/(2/1, -/14) 

and this is possible in view of (6.8). Then we must satisfy the conditions 

fll >fl3/P and �89 1 +P)>fl3/P (6.9) 
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The former is possible with p >/~3/fll. Since 

�89 + p ) >  �89 1) 

the latter condit ion in (6.9) is satisfied if 

p > �89 + 2fi3//~0) 

which is again admitted by (6.8). To summarize, (6.7) holds under condi- 
tion (6.8) if we choose 

max{/~4/(2/33-/34),/33//~1, (/~0 + 2/~3)/(3/~o) } < p < 1 

It remains to consider the case 

min(/~o,/~l) > f14/> f13 (6.10) 

Here we show that  we can find p such (6.7) holds with 

B =  �89 + p)/p2 (6.11) 

First we note that  

P(2/~3 --/34) ~< P/34 < f14 

so that (6.11) holds for all 0 < p < 1. Then we must satisfy the conditions 

l �89 +P)>�89 +p)/p 2 and /31>~f14(l +p)/p 2 

The former holds if p > (/~4///o) 1/2 and the latter if p > (fl4//31) 1/2. Thus (6.7) 
holds under condit ion (6.10) if we choose 

max { (/~4//30) 1/2, (/34//31) 1/2 } < p < 1 

This completes the proof of Theorem 2. 

7. PROOF OF T H E O R E M  4 

For  M N  = 1 the process is entirely static with unique state h = 0 (and 
hence is trivially positive-recurrent). For  M N =  2, the etribedded chain is a 
simple symmetric random walk if /3 o =/34 and is null-recurrent (ref. 3, 
p. 397). Hence, for all M N >  2, the process is not  positive-recurrent under 
the condit ion of the theorem, so it is certainly, null. Theorem 4 makes a 
stronger statement. 

If all the/3 n are equal, the stochastic process of crystallization is equiva- 
lent to running L = M N  independent Poisson processes, at the common 



On the Stability of Crystal Growth 89 

rate, one for each possible site. So the embedded chain is equivalent to a 
multinomial scheme, where at each jump there is a probability l/L, 
independently between jumps, of the new atom going to a particular site. 

Clearly, then, we return to that flat state at jump n (which must of 
course be a multiple of L) if and only if every "cell" of the multinomial 
distribution has the same number of atoms. Writing n = kL, we have 

p(n)= Pr {all cells have the same number of entries, 
which must be k } 

(kL)! 

(kL)~L + 1/2 e-kL(2~)l/2 ( 1 ,~kL 
~ �89 e - ~  \ 2 /  by Stirling's formula 

= Ck-(L-1)/2 for some constant C 

I f L = 2 o r 3 ,  then 

p(n)=oo but p(~)~0 
n ~ 0  

and so the embedded chain is null-recurrent (ref. 3, p. 389). If L/> 4, then 

p(n) < o() 

n=O 

and so the embedded chain is transient. The process in continuous time 
then has the same behavior. 

8. P R O O F  OF T H E O R E M  5 

An ergodic process h(t) is defined as dynamically reversible, with 
conjugate states - h ,  if the equilibrium process h ( T - t )  is probabilistically. 
identical to the equilibrium process -h ( t )  for all T and t. (13'19'20) One can 
choose other conjugate processes, but - h ( t )  seems the natural choice for 
crystal growth models. Dynamic reversibility holds if any only if, for all h, 

q ( h ) = q ( - h )  (8.1) 

and, for any (closed) cycle of states hi, h2,..., hr, hi, 

q(hl, h2) q(h2, ha)-.-q(hr, hj) 

= q ( - h l ,  -hr )  q ( -h r ,  - h r _ l ) . . - q ( - h 2 ,  - h i )  (8.2) 
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Thus, the conditional probability of the cycle equals the conditional 
probability of the reverse cycle through the conjugate states. 

In the case M =  N = 2  we relate the model to the two-dimensional 
process of Section 4. Under the condition /30 +/34 = 2/32 of Theorem 5, 
dynamic reversibility was proved for such a process by Gates and 
Westcott. (6) The equilibrium probabilities were also given and these reduce 
here to 

where 

p ( h ) = Z  t(/30//34)k on gl,1+h2,1-gx,2-hl,1=O (8.3) 

k = 1(1gl. iI + Lh2, 11 + Igl, 21 -t-[h1,11) 

and Z is a normalizing constant. This has a form similar to the familiar 
probability distribution of Gilmer and Jackson. ~1~ The major differences 
are that (a) microscopic rates are different, (b) the Gilmer and Jackson 
process is reversible (not dynamically reversible) and does not allow net 
crystal growth (it can describe only a thermodynamic equilibrium between 
crystal and fluid), and (c) (8.3) applies only if M =  N =  2. 

For the remainder of Theorem 5 we need two lemmas. 

Lemma 2. Suppose M>~3 and N~>2 (or M>~2 and N>~3). Let 
kn(C) (n =0,..., 4) be the number of /3n transitions in a closed cycle C. 
Then: 

(i) 2ko -I- k 1 - k 3 - 2 k  4 = 0 for all C. 

(ii) There exists C such that k 0 r k 4. 

Proof. For (i) we note that y(h) given by (5.4) increases by 
4ko+ 2k~-  2k 3 -4k4  during C. Since C is closed, this must be zero. For 
(ii), consider the cycle that begins with state h = 0 and then places an atom 
at sites (1, 1), then at (2,2), i.e., two /30 transitions. Then, unless 
M = N = 2, one can add an atom to every other site without undergoing a 
f14 o r  a/3o transition until the very last site is occupied, at which point one 
has returned to state h = 0. To achieve this, one can, for example, start at 
site (2, 1) and add atoms to neighboring atoms in some convenient pattern, 
ultimately "painting oneself into the corner" (1, 2) with a /34 transition. 
Then, the left side of (8.2) has the form 

/32/~'1/3~/3k/34 (8.4) 

for some integers i, j, k. For example, if M = 3 and N = 2, one can add 
atoms to sites in the sequence (1,1), (2,2), (2,1), (3,1), (3,2), 
(4, 2) (1,2) with rate product 2 2 = /30]~2]~3/34. This proves Lemma 2. 
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Lemma 3. Equation (8.1) holds for all h if and only if 

~ , = c ~ + n v , .  n = 0  ..... 4 (8.5) 

with c~>0, 7 + 4 v > 0 .  
To prove Lemma 3, we note that  (8.5) implies 

q(h) = MNc~ + vs(h) (8.6) 

with the s(h) of L e m m a l .  Then (8.1) follows immediately. For  the 
reverse implication, we need look only at particular states h. For  a state 
comprising one a tom on a large, flat layer we have 

and 

so that  (8.1) implies 

q(h) = flo + 4fll + ( M N  - 5) rio 

q ( - h )  = f14 + ( M N -  1)/~o 

4fll = 3,go + f14 

The state with atoms at (1, 1) and (2, l) on an otherwise flat layer gives, 
similarly, 

3/~1 = 2/~o + P3 

The state with atoms at (1, 1) and (2, 2) gives 

eft, + f12 = 2flo + f14 

and the state with atoms at (1, 1), (2, 2), and (3, 1) gives 

5/h + 2~2 + / L  = 5/~o + 3/~4 

These four relations among the ft, reduce to 

/h - / L  = P3 - / h  =/?2 - /~ l  =/~, -/~0 

This implies (8.5), which completes the proof of Lemma 3. 
Now we note that  if h ~ h' is a ft, transition, then - h '  --+ - h  is a f14-,, 

transition. Thus, (8.2) takes the form 

fl k o R k l R k 2 R k 3 R k 4  __ R k o R k l R k z R k 3 R k 4  
0 V l  / "2  /- '3 Y d  - - P 4  / "3  Y 2  F 1  /- '0 
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Using Lemma 2(i), this reduces to 

( / ~ o / / ~ 4 ) k ~  - k4 = ( / ~  1 / / ~ 3 ) 2 ~ ~  - ~ 

and Lemma 2(ii) implies 

/~O/f14 = ( /~1/ /~3)  2 (8.7) 

This, together with (8.5), holds only if v = 0 .  Thus, (8.1) holds and (8.2) 
holds for all closed cycles only if v = 0. But Theorem 4 says this case is not 
ergodic and hence is not dynamically reversible. This completes the proof 
of Theorem 5. 

One can give a physically plausible argument that (8.1), or equiv- 
alently (8.5), should apply to crystal and related growth processes, as 
follows. Suppose each face to which an atom can attach attracts that atom 
independently of other faces, horizontal faces with probability c~ dt, vertical 
faces with probability v dt in a small time dt. Then the probability that, in 
time dt, an atom attaches to a fin site is the probability of attachment to 
the horizontal face or to any one of the n vertical faces at this site. The 
probability of this union of events is 

fin dt = 1 - (1 - c~ dt)(1 - v dt)  n 

= (~ + nv) dt + O { ( d t )  2 } 

so that (8.5) follows. 

9. ESCAPES A N D  T W O - P H A S E  ( T H E R M O D Y N A M I C )  
E Q U I L I B R I U M  

When crystal growth is slow, events in which atoms escape from the 
crystal surface have significant probability. These probabilities are of 
similar magnitude to the capture probabilities if the crystal-fluid system 
is in two-phase (thermodynamic) equilibrium, when there is no net 
crystal growth. Escape events dominate during the melting, dissolving, or 
vaporizing of the crystal surface. 

Assuming that escape rates of atoms are determined (like capture 
rates) by the number of atomic contacts prior to escape leads to another 
five parameters analogous to the fin. A convenient way to represent escapes 
is to first consider another process with capture event only. Let q'(h, h') be 
its transition rate matrix taking values fl'n, n = 0  ..... 4, for captures which 
cover n vertical faces (as before). 

If q'(h, h') is a fi', capture, then q '~ -h ,  - h ' )  is an escape for which the 
surface gains 4 - 2n vertical faces. For  example, a single atom sitting on top 
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of a flat layer escapes at rate fl;, and an atom escapes from within a flat 
at rate fl;. Then the new process with transition matrix 

~(h, h') = q(h, h') + q ' ( - h ,  - h ' )  (9.1) 

admits both captures at rates fin and escapes at rates fl',. There are no 
composite transitions, because the transitions h--, hi, j and - h - - ,  -hi,  j are 
distinct. 

Our main results are minor extensions of Theorems 1-5. Theorems 6 
and 7 offer something new. 

T h e o r e m  1E. Suppose that (3.1) holds separately for the fin and 
the fl'n, with at least one of the two inequalities being strict. Then the 
process is ergodic. 

Theorem 2E. If min(fio, f l l ) )max( f l3 ,  fl4) and min(fi~,fl'l)~> 
max(fl;, fl~,) and at least one of the inequalities is strict, then the process is 
transient. 

T h e o r e m  3E. If min(flo, f i l)=max(fi3,  f14) and min(fl;, fl'l)= 
max(fi;, fl;), then the process is null. 

T h e o r e m  4E. If rio = fil = f12 = f13 = f14 and fl~ = fi'l = fl; = fl~, then 
the process is null-recurrent for M N =  2 or 3 and transient for MN>>. 4. 

T h e o r e m  5E. If M = N = 2 ,  f l o - 2 f l 2 + f i 4 = f l e - 2 f l ; + f l ; ,  and 
flo/fl4 = fl'o/fl'4, then the process is dynamically reversible with equilibrium 
probability function (8.3). If M~>2 and N>~3 (or vice versa), then the 
process is not dynamically reversible for any choice of fin and fl'n. 

T h e o r e m  6. If fl'n = t/fin for all n, and the fin are given by (8.5), then 
the process has growth rate 

(1 -1'/) G(t) (9.2) 

where G(t) is the growth rate, at time t, in the q = 0 model. 

T h e o r e m  7. Suppose fi', =f t , .  Then for M =  N = 2  and under the 
conditions of Theorem 5E, the process is reversible. For M ~> 2 and N/> 3 
(or vice versa) and the conditions of Theorem 6, the process is not revers- 
ible. 

Theorem 1E is proved by the method of Theorem 1. Now (4.5) has 
added to it another similar sum involving escapes. Treating this in the same 
way gives the theorem. 

The conditions of the theorem are physically plausible: exposed atoms 
with no side neighbors escape at the highest rate fl;; atoms locked within 
a layer escape at the lowest rate fie, so there is a tendency toward a flatter 
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surface (and hence toward recurrence). We would expect, however, to find 
ergodicity under (at least) the conditions (3.2) and 

(9.3) 

Theorems 2E and 3E are proved by slight modifications of previous 
proofs (Sections 5 and 6). In both cases, one adds to Z'(h) further terms 
involving the fl', and the N , ( - h ) .  These terms can be dealt with in the 
same way as, and independently of, the previous terms. The results are 
physically plausible because they tend against (3.2) and (9.3) and hence 
toward increasingly rough surfaces. 

Theorem 4E implies, like Theorem 4, independently growing columns 
and is proved by the same method. 

For Theorem 5E, in the case M = N =  2, one follows the proof of 
Theorem5 and verifies (8.1) and (8.2) in the manner of Gates and 
Westcott. (6) For M~> 3, N>~ 2 (or vice versa) we note first from (9.1) that 

0 ( h )  - g / ( - h )  = q * ( h )  - q * ( - h )  

where 

q*(h) -= q(h) - q'(h) 

So, following the proof of Lemma 3 (negative values of q* do not matter) 
gives the following result. 

L e m m a  4. O(h) = O ( - h )  for all h if and only if 

fin-fi',=-c~+nv, n =  0,..., 4 

Lemma 2 holds in this new context with the k n replaced by kn + k'n, 
where k',(C) is the number of fl', transitions in a closed cycle C. 

Now one can find cycles with only fl0, f14, fib, and fl; transitions. For 
these, (8.2) gives 

But ( k o + k ; ) =  (k4+k~) and there are cycles with koCk4. Thus, (8.2) 
implies 

/~0//~4 =/~;//~; 

and similarly 
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Using (8.5) and putting bn =/~n-/3'n, we deduce that 

bob~=b2b4 

and, from Lemma 4, bn = ~ + nv. These conditions imply v = 0. The equality 
of the bn implies flo=fl4, i l l=B3,  /~;=/~i, and B'I=B;. Then 
cT(h, h ' )=~7(-h ' ,  - h ) ,  so the equilibrium equations are satisfied by a p(-)  
that is independent of h. Such a p is not normalizable, so the process is null 
(ref. 13, p. 3). 

For Theorem 6, we note that the growth rate, in general, is the 
expectation of 

q(h) - q ' ( - h )  (9.4) 

over pt(h). If/r = t//3n, then 

q'(h, h ' ) =  r/q(h, h') (9.5) 

Also, the /~'n are then of the form (8.5) (since the /3,, are), so that, by 
Lemma 2, 

q ' ( - h )  = q'(h) (9.6) 

Now (9.5) and (9.6) imply 

q ' ( - h )  = r/q(h) 

from which (9.2) follows. The significance of Theorem 6 is that the growth 
rate is trivially modified by escape events under the conditions of the 
theorem, and that r/= 1 gives zero growth. This idea was exploited in the 
two-dimensional case, (5) where growth rates can be found exactly. 

For M = N = 2 the statement of Theorem 7 follows from Proposition 1 
of ref. 5. For M~>3 and N>~2 (or vice versa) we note that (9.1) reduces 
here to 

c)(h, h') = q(h, h') + q ( - h ,  - h ' )  (9.7) 

whence 

O(h, h') = c~(-h, - h ' )  

= ~'q(h, h') 

~ q ( - h ,  - h ' )  
for captures 

(9.8) 
for escapes 

The reversibility of a process is equivalent to the Kolomogorov cycle 
condition, (2o) 

~(hl, h2) ~(h2, h3)..-~(hr, h l ) = q ( h l ,  hr) ~(hr, h r ~)-..~(h 2, h~) (9.9) 

822/59/1-2-7 
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for all cycles ha, h2,..., hr, hi. But (9.8) and our counterexamples to (8.2) 
show that (9.9) does not always hold. 

The significance of Theorem 7 is that reversibility, and concomitant 
conditions like detailed balance, need not hold when there is zero growth 
rate, even in plausible models. Objectively this may seem unremarkable, 
but the notion of detailed balance is so entrenched in the physics literature 
that an exception seems to cut across convention. But we know of no 
compelling physical argument for reversibility. 

Theorem 7 describes zero growth rate, but does it describe two- 
phase equilibrium? Probably, but we have no general proof. If v >  
1/4(MN-1)2c~, such an equilibrium exists by Theorem 1E. When an 
equilibrium p(h) does exist, we do at least have one familiar reflection 
invariance property (1~ 

p ( h ) = p ( - h )  (9.10) 

To prove this, note that (9.8) implies 

c)(h) = c)(-h)  (9.11) 

The equilibrium equations [cf. (2.7)] are 

p(h) c ) (h )= ~  p(h') O(h', h) (9.12) 
h' 

Changing h to - h  and h' to - h '  and using (9.8) and (9.11) gives 

p ( - h )  0 ( h ) = ~  p ( - h ' )  0(h', h) (9.13) 
h' 

The uniqueness of the solution p(h) of (9.12) then implies (9.10). 
By the same argument applied to (2.7), we find that (9.8) implies 

pt(h) = p , ( - h )  for all t provided po(h) = Po( -h ) .  

10. M E A S U R E S  OF SURFACE R O U G H N E S S  

We have already noted in Section 3 that ergodic processes eventually 
achieve statistical stability, with an equilibrium distribution over the 
possible states (2.5) of the surface. By contrast, no such distribution or 
stability occurs for null processes. Mathematically, this is because null 
processes spend too much time in states with arbitrarily large indices h 
(rough surface states); indeed, transient processes eventually never return 
to any finite set of states. In the ergodic case the chance of the surface being 
in a state far removed from 0 (the flat state) becomes small. That is, the 
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degree of irregularity, or roughness, of the surface is controlled in ergodic 
cases, but not in null cases. 

To quantify this, we need to order the states h using a convenient 
index j ( h ) ~ Z + .  Two obvious condidates are the right sides of Eqs. (4.3) 
and (5.4), these being measures of roughness. For mathematical reasons, it 
is preferable to define a measure of  smoothness a = a ( h ) ,  where a( . )  is a 
positive noninereasing function of j ( - )  and a(h)+0 as j ( h ) ~  oe. So a high 
roughness measure corresponds to a small smoothness measure. 

Suppose now that our process commences in some state h0 at time 
t--0.  Let h(t) represent the state of the process at time t, with the proba- 
bility distribution p,(h; ho) of (2.7) (we now acknowledge the initial state 
explicitly). Then the expected value of the measure of smoothness is 

e(t) = (a{h( t )}  I h(0) = ho) 

= ~  a(h) p,(h; h0) 
h 

Theorem 8. (i) If the process is ergodic, lim,~ ~ e(t) exists and is 
positive Vho. (i) If the process is null, lim,~ ~ e(t) = 0 Vho. 

ProoL (i) In the ergodic case, Peq(h) exists and is strictly positive Vh 
[ref. 1 (II.lO)]. Since ~2h' p~q(h') pt(h; h ' ) =  p~q(h), we have (m 

p,(h; ho) ~< p~q(h)/peq(ho) (10.2) 

Since a(h) is nonincreasing, it is bounded, so lira, ~ ~ e(t) = ~h a(h) peq(h) 
exists Vh 0 by dominated convergence and is strictly positive because p~q is. 

(ii) In the null case, l i m t ~ p , ( h ; h o ) = 0  [ref. 1, (II.10)]. Because 
a(h) ~ 0, given any g > 0 there is a set H of states, whose complement H'  
is finite, such that a (h )<~  if h ~ H .  Let B = S U p h ~ c a ( h ) <  ~ .  Now 

e(t)= { ~ H  + h  c h~H ~ } (~(h) p,(h; ho) 

~<B ~ p,(h;ho)+ 
h ~ H  ~ 

so lira sup, ~ ~ e(t) <~ ~ Vh o and the result follows. 
Thus, our average measure of smoothness remains positive for ergodic 

processes, but becomes arbitrarily small for null processes, as we would 
hope. Notice that the theorem applies to any measure a with the 
appropriate properties. 
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It is possible to refine (ii) to distinguish between the null-recurrent and 
transient cases. Further analysis shows that, for a transient process, we 
have the stronger result 

lim o{h(t)} = 0 for all h(t) outside a set of zero probability (10.3) 
t ---+ o o  

Clearly, this is not the case for any recurrent process, which will return to 
0 infinitely often, so lira sup,~ o~ a { h ( t ) } -  ~r(0) with probability one. 

One specific example of a smoothness measure that we have already 
met is the function defined at (6.3) and used in the proof of transience in 
Theorem 2. For  this measure we can obtain a stronger (though less 
general) result for the regime of Theorem 2. 

T h e o r e m  9. If a(h) is given by (6.3) and min(flo, r i l )>  
max(ri3, ri4), then, for all h o, 

e(t) < e-U' (10.4) 

where # =  ( 1 - c o )  inf q(h) > 0  and co (0 <co < 1) is defined below. 
This shows that surface roughness grows, in an average sense, at an 

exponential rate. So, physically, the surface development should be sharply 
distinct from the stable (ergodic) case. 

Proof.  In Section 6 we proved b > B  for large enough p, say 
Pmin < P < 1. Then from (6.4) and Lemma 1 we have 

Y, <<. y -- yq 1(1 - p)(b - B)(ZNo + N~) 

Since No>~ 1, we have 2No + N1 ~> 2. Also, 

4 

q =  E r i .U .  
0 

4 rioNo + rilN1 + ri2N2 + min(rio, ri~)(N3 + N4) 

4 c M N  

where c = max(r/o, ill, ri:). Thus, 

S(h )  <~ coy(h) 

where 

(lO.5) 

co(p) = 1 -- 2(1 - p)(b - B ) / ( M N c )  (10.6) 

so that 0 < co < 1. If p(')(h, h') are the n-step transition probabilities of the 
embedded chain, then iteration of (10.5) gives 

e (") ~ ~ p(')(h, h') y(h') ~< co'y(h) ~< con (10.7) 
h '  
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If p ~< Pmin, we define 

co(p)= rain co(p) (10.8) 
Prom <'P < 1 

and obtain for the n-step conditional expectation of y, 

e(") ~< co n (10.9) 

for all p. As in Theorem 8, we have the contrasting result that e (') is 
bounded away from zero in the ergodic case. 

To prove (10.4), use (10.5), (3.4), and the usual convention 
q(h, h)= -q (h )  to get 

q(h, h ' )  o-(h') ~< - ( l  - co) q (h)  o-(h) 
h' 

~< -#a(h) ,  Vh (10.10) 

So a(-)  is a/~-subinvariant function for q(. ,-) ,  with/~ ~< inf q(h). Then from 
the dual to Proposition l(i) of ref. 15, a( . )  is also #-subinvarant for the 
process h(t), which is minimal since it is regular. That is, 

p,(h; ho) a(h) < e-~'a(ho) 
h 

~< e-~t, Vt, h o 

which is (10.4). 
Note that our method also proves that pt(h; ho) = O(e-~") for all h, ho 

and some 2>~# [cf. ref. 15, the proof of Proposition l(ii)], which 
significantly supplements the general transience result p t ( h ; h o ) ~ 0 .  A 
consequence of this result is that, for any finite set of states H, 

Pr{h(t)~Hlh(O)=ho}=O(e ;") (10.11) 

That is, the process has an exponentially small chance of being in any finite 
set of states as time increases. This is yet another indication of the rapid 
tendency to roughness in the transient regime of the theorem. 

One consequence is that simulations with min(flo, f l l )~max(fl3,  f14) 
should contrast sharply with stable cases. On the other hand, null-recurrent 
cases might be quite hard to identify by simulation alone. 

11. UNSOLVED PROBLEMS 

In our approach, where the growth model is defined solely in terms of 
microscopic rates for single-atom transitions (discrete state space), under- 
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standing of the resulting surface growth behavior in mathematical terms 
has scarcely begun. If one wants to study stable (ergodic or steady-state) 
growth, all one has is a proof  of its occurrence under Theorems 1 and 1E 
and in the constrained cases (Section 2). The conditions of these theorems 
are unsatisfactory, both physically (as discussed in Section3) and also 
mathematically: Theorems 1-4 leave a large part  of the (/3o ..... /34) 
parameter  space unclassified. 

Furthermore,  there is no stable case, with net growth, where the 
stationary distribution (of h) is known. Worse still, Theorems 5 and 5E 
indicate why such a stationary distribution might be difficult to find. The 
equations for this distribution [i.e., @ t / &  = 0 in (2.7)] have none of the 
nice balance properties that would render them tractable. Until one has 
such a distribution, the detailed study of surface properties, through 
partition functions and so on, cannot even begin. 

How can one improve on Theorem 17 As we have already said (Sec- 
tion 4), Foster 's theorems, though potentially powerful, offer no guide to 
the choice of test function y(h). We chose our three different test functions 
by a combination of trial and error and a little physical intuition. There 
may be scope for much better choices: basically one wants a test function 
that dr i f t s  in the right direction under weak enough conditions on the rates 
/3n. Both physicists and mathematicians might be able to contribute to this 
problem. 

The unstable (transient and null-recurrent) cases are more likely 
to be relevant to rapid growth. Only in the independent-sites case 
(/30=/31 =/32=/33=/34) can we say anything about  the detailed surface 
structure. When neighboring sites are dependent, there is scope for a rich 
variety of surface structures as one moves through the parameter  sets given 
in Theorems 2, 3, 2E, and 3E. 
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